
 Nov 2014 (Volume 1 Issue 6) JETIR (ISSN-2349-5162)

JETIR1406006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 405

Performance Evaluation of LDPC decoding

Algorithm for GF (2)
1
Patel Jigisha,

2
Patel Ruchitakumari

Assistant Lecturer,

E & C Department,

Sardar Vallabhai National Institute of Technology, Surat, Gujarat, India.

Abstract - Low Density Parity Check (LDPC) codes are one of the block coding techniques that can approach the

Shannon’s limit within a fraction of a decibel for high block lengths. In many digital communication systems, these codes

have strong competitors of turbo codes for error control. LDPC codes performance depends on the excellent design of

parity check matrix and many diverse research methods have been used by different study groups to evaluate the

performance. Unlike many other classes of codes, LDPC codes are already equipped with a fast, probabilistic decoding

algorithm. This makes LDPC codes not only attractive from a theoretical point of view, but also very suitable for practical

applications. This paper throws hard decision and soft decision algorithm of LDPC. The hard decision algorithm contains

Bit flipping algorithm and Soft decoding algorithm contains Sum product algorithm which is used to correct burst error.

Sum Product algorithm is also called as belief propagation. Bit flipping and Sum Product algorithms are explained and

can be implemented for the generated for LDPC code with BPSK modulation.

Index Terms - Encoder, Bit Flipping Algorithm, Sum Product Algorithm, AWGN channel
__

I. INTRODUCTION

Low-density parity-check (LDPC) codes are a class of linear block codes with implementable decoders, which provide near-

capacity performance on a large set of data transmission and data-storage channels. Low-density parity-check (LDPC) codes were

first introduced by R.G.Gallager[1] and rediscovered by MacKay in 1996[2]. Davey and Mackay rediscovered that by extending

the order of Galois Field GF (q)[3]. This class of codes is known as non-binary LDPC codes. These codes are showing more and

more competitive and have become some error-correcting code standards or the candidate standard in communication system.

LDPC codes were invented by Gallager in his 1960 doctoral dissertation and were mostly ignored during the 35 years that

followed[2]. One notable exception is the important work of Tanner in 1981, in which Tanner generalized LDPC codes and

introduced a graphical representation of LDPC codes, now called a Tanner graph[4]. The study of LDPC codes was resurrected in

the mid 1990s with the work of MacKay, Luby, who noticed, apparently independently of Gallager’s work, the advantages of

linear block codes with sparse (low-density) parity-check matrices[5].

The Bit-Flipping (BF) decoding algorithm[6], which was proposed by Gallager in 1962, and rediscovered by Mackay and

Neal in 1996, is based on the hard decision of symbol. BF is simple and easy to be implemented, but has only limited decoding

performance. Well designed LDPC codes decoded with iterative decoding based on belief propagation algorithm, such as the sum

product algorithm (SPA)[7] achieve performance close to the Shannon limit 0.0045[2].

The paper is organized as follows: Section I the introduction of LDPC is explained. Section II is containing encoding method of

LDPC for generating codeword that is transmitted on channel. Section III decoding methods of LDPC in this section Bit Flipping

(Hard Decision) and Sum Product (soft Decision) algorithm of the decoder is explained. Section IV Results and analysis for

different decoding algorithm explained. Section V contains Conclusion.

II. ENCODING

There are plenty of methods used for generating parity check matrix and Generator matrix. Parity check matrix is generated

using Base matrix which consists of many sub matrices within it. Memory requirement is quite crucial issue during the VLSI

implementation of LDPC codes. Generation of Parity check matrix using Base matrix requires less memory. Parity check matrix

is obtained after expansion of Base matrix. Base matrix has elements like 0, -1 and any number between 0 to Z-1, where Z is an

expansion factor. During expansion, -1 is replaced by Z x Z all zero matrix and any number between 0 to Z-1 is replaced by Z x Z

identity matrix circular shifted by that number that shown in Fig. 1. Many of the standards like 802.11n, 802.16e etc. uses this

method. Generator matrix is generated from parity check matrix using Gauss elimination method [5].

A. Gauss Elimination Method

 The conventional method of encoding with the generator matrix is derived from parity check matrix by (modulo-2) Gauss

elimination. This method is used for finding the unknown generator matrix G from the Parity Check Matrix (PCM) achieved

through row permutations, modulo-2 sums of rows and also some column permutation [5].

http://www.jetir.org/

 Nov 2014 (Volume 1 Issue 6) JETIR (ISSN-2349-5162)

JETIR1406006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 406

Fig. 1 Base matrix having expansion factor 7

The generator matrix G is given by G = {A
T
| Ik}. It is used to reduce H into row-echelon form by applying elementary row

operations. The encoded codeword c is derived from the matrix multiplication c = u x G, where u is the message to be transmitted.

The encoding process consists of normal matrix multiplication.

III. DECODING ALGORITHM OF LDPC CODER

The algorithm used to decode LDPC codes was discovered independently several times and as a matter of fact comes under

different names. The most common ones are the belief propagation algorithm, the message passing algorithm and the sum-product

algorithm [7]. In order to explain this algorithm, a very simple variant which works with hard decision [6], will be introduced

first. Later on the algorithm will be extended to work with soft decision which generally leads to better decoding results.

A. Hard Decision (Bit Flipping) Algorithm

Tanner designed LDPC codes with a graphical representation method which called Tanner graph [4]. Tanner graph can express

the decoding process of LDPC codes effectively and completely. For an example of Tanner graph with (8, 4) LDPC code is given in

Figure 2 and it can describe a regular parity check matrix H intuitively in Eq. 1 Tanner graph has two different nodes which are the

variable nodes (v-node) and the check nodes (c-node). Each row of a parity check matrix H is to match each check node of Tanner

graph, and each column of a parity check matrix H is to match each variable node of Tanner graph. Check node i is connected to

neighbor variable node j when hij in H is assigned to 1. Otherwise, it is not connected the value of this element is 0. Therefore, n

variable nodes and m = n-k check nodes are existed in a parity check matrix H and are matched to Tanner graph.





















01011001

11100100

00100111

10011010

H

 (1)

Fig. 2 Graphical representation of tanner graph for LDPC code

An error free codeword of H is c = [1 0 0 1 0 1 0 1]. Suppose we receive y = [1 1 0 1 0 1 0 1]. So c2 was flipped. The algorithm is

as follow

Step 1. All v-nodes ci send a”message” to their c-nodes fj containing the bit they believe to be the correct one for them. At this

stage the only information a v-node ci is the corresponding received i
th

 bit of c. That means for example, that c1 sends a message

containing 1to f1 and f3, node c2 sends messages containing y1 (1) to f0and f1, and so on.

Step 2. Every check nodes calculate a response to their connected message nodes using the messages they receive from step 1.

The response message in this case is the value (0 or 1) that the check node believes the message node has based on the

http://www.jetir.org/

 Nov 2014 (Volume 1 Issue 6) JETIR (ISSN-2349-5162)

JETIR1406006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 407

information of other message nodes connected to that check node. This response is calculated using the parity-check equations

which force all message nodes connect to a particular check node to sum to 0 (mod 2).

Table 1. Check nodes activities for hard-decision Decoder for code of Fig. 2

In Table 1, check node f1 receives 1 from c4, 0 from c5, 1 from c8 thus it believes c2 has 0 (1+0+1+0=0), and sends that

information back to c2. Similarly, it receives 1 from c2, 1 from c4, 1 from c8 thus it believes c5 has 1 (1+1+1+1=0), and sends 1

back to c5. At this point, if all the equations at all check nodes are satisfied, meaning the values that the check nodes calculate

match the values that receive, the algorithm terminates. If not, we move on to step 3.

Table 2. Message nodes decisions for hard decision Decoder for code of Fig. 2

Step 3. In this step, the message nodes use the messages they get from the check nodes to decide if the bit at their position is a 0

or a 1 by majority rule. The message nodes then send this hard-decision to their connected check nodes. Table 2 illustrates this

step. To make it clear, let us look at message node c2. It receives 2 0’s from check nodes f1 and f2. Together with what it already

has y2 = 1, it decides that its real value is 0. It then sends this information back to check nodes f1 and f2.

Step 4. Repeat step 2 until either exit at step 2 or a certain number of iterations has been passed. In this example, the algorithm

terminates right after the first iteration as all parity check equations have been satisfied. c2 is corrected to 0.

A. Soft-Decision Algorithm

The above description of hard-decision decoding was mainly for educational purpose to get an overview about the idea. Soft-

decision decoding of LDPC codes [7], which is based on the concept of belief propagation, yields in a better decoding

performance and is therefore belief propagation the preferred method.

The soft-decision decoder operates with the same principle as the hard-decision decoder, except that the messages are the

conditional probability that the received bit is a 1 or a 0 given the received vector y.

let Pi = Pr(ci = 1|yi) be the conditional probability that ci is a 1 given the value of y and let Pr(ci = 1|yi) = 1- Pi. qij is a

message sent by the variable node ci to the check node fj. Every message contains always the pair qij(0) and qij (1) which stands

for the amount of belief that yi is a”0” or a ”1”.

http://www.jetir.org/

 Nov 2014 (Volume 1 Issue 6) JETIR (ISSN-2349-5162)

JETIR1406006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 408

Fig. 3 VN Decoder and CN decoder

rji is a message sent by the check node fj to the variable node ci. Again there is a rji(0) and rji(1) that indicates the

(current)amount of believe in that yi is a ”0” or a ”1”.The step numbers in the following description correspond to the hard

decision case.

Step 1. All variable nodes send their qij messages to check node from below equation

 qij(1) = Pi and qij(0) =1 - Pi (2)

Step 2. The check nodes calculate their response messages rji

   



ij

jiji

vi

qr
/

'

'

)1(21
2

1

2

1
0

 (3)

)0(1)1(jiji rr 

 (4)

So they calculate the probability that there is an even number of 1’s among the variable nodes except ci (this is exactly what Vj\i

means). This probability is equal to the probability rji(0)that ci is a 0. This step and the information used to calculate the responses

is illustrated in Fig. 3.

Step 3. The variable nodes update their response messages to the check node ci to the variable node fj. This is done according to the

following equations





ji

ijijij

cj

rPikq
/

'

'

)0()1()0(

 (5)





ji

ijiijij

cj

rPkq
/

'

'

)0()1(

 (6)

Where by the Constants Kij are chosen in a way to ensure that qij(0)+qij(1) = 1. Ci\j now means all check nodes except fj.At this

point the v-nodes also update their current estimation their variable ci. This is done by calculating the probabilities for 0 and 1 and

voting for the bigger one. The used equations are quite similar to the ones to compute qij(b) but now the information from every c-

node is used.





i

jiiii

Cj

rPKQ)0()1()0(

 (7)

 (8)





i

jiiii

Cj

rPKQ)1()1(

 (9)

If the current estimated codeword fulfills now the parity check equations the algorithm terminates. Otherwise termination is

ensured through a maximum number of iterations.

IV. RESULT AND ANALYSIS

 In this section, the BER performance for the Hard decision (Bit flipping) and Soft decision (Sum Product) algorithms with

irregular (1016,508)LDPC codes with codeword length is 1016 and code rate is 0.5 are presented. The simulations are performed

over an additive white Gaussian noise (AWGN) channel with BPSK modulation for different number of iterations.







 


else

QifQ
C

ii

i

0

)0()1(1

http://www.jetir.org/

 Nov 2014 (Volume 1 Issue 6) JETIR (ISSN-2349-5162)

JETIR1406006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 409

Fig. 4 Simulation result for (508,1016) for bit flipping algorithm

Fig. 4 is shows BER Vs SNR is plotted for the Hard decision (Bit flipping) algorithm for iteration 4 and iteration 10. If number of

iteration is increases the BER performance improves at the cost of decoding time. So at iteration 10 BER performances is good as

compare with iteration 4.

Fig. 5 Simulation result for (508,1016) for Sum Product algorithm

Fig. 5 is shows BER Vs SNR is plotted for the Soft decision (Sum Product) algorithm for iteration 10 and iteration 25. If number

of iteration is increases the BER performance improves at the cost of decoding time. So at iteration 25 BER performances is good

as compare with iteration 10.

V. CONCLUSIONS

 BER Performance for Sum Product Algorithm and Bit Flipping Algorithm is checked with different number of iterations. It is

observed that as number of iteration increases the BER performance improves at the cost of decoding time. It can be seen from

BER performance that the Sum Product Algorithm is better in comparison with Bit flipping Algorithm.

1 2 3 4 5 6 7 8 9 10 11
10

-3

10
-2

10
-1

10
0

Eb/No(dB)

B
E

R

Results with different for Hard Decision(Bit flipping)algorithm

iteration=4

iteration=10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

-3

10
-2

10
-1

Eb/No(dB)

B
E

R

 Result with Soft Decision(SPA)algorithm

iteration 10

iteration 25

http://www.jetir.org/

 Nov 2014 (Volume 1 Issue 6) JETIR (ISSN-2349-5162)

JETIR1406006 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 410

VI. ACKNOWLEDGMENT

 I am really thankful to my guide without which the accomplishment of the task would have never been possible. I am also

thankful to all other helpful people for providing me relevant information and necessary clarifications.

REFERENCES

[1] William E. Ryan, Shu Lin, “Channel Codes-Classical and Modern”,Cambridge University Press 2009, ISBN-13 978-0-511-

64182-4 eBook (NetLibrary).

[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions on Information Theory,

vol.45, pp. 399–431, Mar.1999.

[3] S. K. Chilappagari, B. Vasi´c, and M. W. Marcellin, “Guaranteed error correction capability of codes on graphs,” in

Proceedings of the Information Theory and Applications, UCSD, Feb 2009.

[4] D. Burshtein, “On the error correction of regular LDPC codes using the flipping algorithm,” IEEE Trans. Inf. Theory, vol.

54, no. 2, pp.517–530,Feb. 2008.

[5] T. Richardson and R. Urbanke, “The capacity of low-density parity check codes under messag epassing decoding,” IEEE

Trans. Inform. Theory, vol. 47, pp. 599 – 618, may 2001.

[6] Zijian Dong, Tiecheng Song, “New Weighted Bit-Flipping Decoding Algorithm for LDPC Codes”,IEEE International

Symposium on Computer, Communication, Control and Automation, pp.384-386,April 2013.

[7] Adrian Voicila, David Declercq, François Verdier, Marc Fossorier, and Pascal Urard. ”Low-Complexity Decoding for Non-

Binary LDPC Codes in High Order Fields” IEEE transactions on communications, vol.58, no. 5,pp.1365,1375,may 2010

http://www.jetir.org/

